Maturing Clinical Profile of IMGN779, a Next-Generation CD33-Targeting Antibody-Drug Conjugate, in Patients with Relapsed or Refractory Acute Myeloid Leukemia

Jorge E. Cortes¹, Daniel J. DeAngelo², Harry P. Erba³, Elie Traer⁴, Nikolaos Papadantonakis³, Cecilia Arana-Yi⁵, William Blum⁶, Callum M. Sloss⁷, Kerry Culm-Merdek⁷, Patrick A. Zweidler-McKay⁷, and Eunice S. Wang⁸

¹MD Anderson Cancer Center, Houston, TX; ²Dana-Farber Cancer Inst., Boston, MA; ³University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL; ⁴Division of Hematology and Medical Oncology, Oregon Health & Sciences University, Portland, OR; ⁵University of New Mexico, Albuquerque, NM; ⁶The Ohio State University, Division of Hematology, Department of Internal Medicine, Columbus, OH; ⁷ImmunoGen, Inc., Waltham, MA; ⁸Roswell Park Comprehensive Cancer Center, Buffalo, NY

CD33-Targeting ADCs in AML

- CD33 is a sialic acid binding receptor, expressed on the surface of the majority of AML blasts
- CD33 is an established ADC target in AML, as evidenced by the recent re-approval of gemtuzumab ozogamicin (Mylotarg®)
- Safety and efficacy limitations of existing CD33-targeting ADCs → opportunity for improvement
- Next generation CD33-directed ADCs with alternate MOAs and broader therapeutic windows may provide additional benefit for patients

IMGN779 A Next-Generation CD33-Targeting ADC

- 2 ADC internalized
- 3 Payload released
- 4 Payload alkylates DNA

- High-affinity, humanized anti-CD33 antibody
- Novel DNA-alkylating payload, DGN462, with potent preclinical anti-leukemia activity
- IGNs: novel cytotoxic payload class¹
- —single strand DNA breaks (vs. double strand breaks)
- better therapeutic index relative to cross-linking payloads²

IMGN779 Phase 1 Study Study Objectives

Primary

 Establish the MTD and RP2D of IMGN779 administered as monotherapy using once every two weeks (Q2W) and once weekly (QW) dosing schedules

Secondary

- Evaluate safety and tolerability of IMGN779, including determination of dose-limiting toxicities (DLT)
- Characterize the preliminary antitumor activity, pharmacokinetic (PK), and pharmacodynamic (PD) profiles

IMGN779 Phase 1 Study Study Design

- Adults (≥18 years) with relapsed or refractory CD33+ AML
- CD33+ defined as ≥20% of blasts expressing CD33 by local flow cytometry
- Dose escalation follows a 3+3 design
- Two schedules tested
 - Q2W: administered i.v. on Days 1 and 15 of a 28-day cycle
 - QW: administered i.v. on Days 1, 8, 15, and 22 of a 28-day cycle

IMGN779 Phase 1 Study Dose Escalation and Patient Allocation

 Based on PK/PD and safety data through 0.54 mg/kg Q2W, opening of the QW schedule was initiated at the 0.39 mg/kg dose

^{*} Includes replaced and expansion patients

IMGN779 Phase 1 Study Patient Demographics

Characteristic (N = 57)		Median [range], or N (%)
Age, y		68 [26-88]
Sex	Female	31 (54)
Prior therapy*	Non-intensive only	17 (30)
	Intensive	40 (70)
Prior SCT		9 (16)
Disease status	First relapse	13 (23)
	Primary refractory	16 (28)
	Relapsed refractory	28 (49)

^{*} Non-intensive therapy includes HMA, IDH inhibitors; intensive therapy includes 7+3, HiDAC, Vyxeos, SCT

IMGN779 Phase 1 Study Pharmacokinetics

- Plasma IMGN779 concentrations indicate consistent and sustained exposure through 7 days at doses ≥0.39 mg/kg
- With QW dosing, trend for modestly higher end of infusion values with 0.39 mg/kg compared to Q2W schedule; similar for 0.54 and 0.7 mg/kg doses

IMGN779 Phase 1 Study Pharmacodynamics: CD33 saturation

- Q2W Schedule: Complete CD33 saturation is transient (<14 days)
- QW Schedule: More consistent saturation than Q2W schedule

IMGN779 Phase 1 Study Treatment-Emergent Adverse Events >15%

IMGN779 Phase 1 Study Safety Summary

- Median number of doses administered: 4 (range, 1-40)
- Most frequent SAEs infection-related: febrile neutropenia (37%), bacteremia (14%), and pneumonia (14%)
 - -Three SAEs considered related to IMGN779: Grade 3 infusion-related reaction (n=2), and febrile neutropenia (n=1)
- No pattern of dose-dependent hepatotoxicity
 - -Hyperbilirubinemia (19%), ALT elevation (14%)
 - -One DLT (1.2 mg/kg QW): VOD with acute kidney injury (fatal)
- 10 deaths within 30 days of last dose: pneumonia / respiratory (n=6), sepsis / multi-organ (n=2), VOD (n=1) and myocardial infarction (n=1)

IMGN779 Phase 1 Study Best Decrease in Bone Marrow Blasts (Q2W and QW dosing, ≥0.39 mg/kg)

0.54 0.39 1.20 0.54 0.39 0.70 0.54 0.39 1.50 0.54 0.70 0.91 0.91 0.39 0.54 1.20 0.70 0.54 0.39 1.20 0.91 0.70 1.50 0.39 0.39 0.39 0.54 0.39 0.39 0.54

IMGN779 Phase 1 Study Time on Study (Q2W and QW dosing, ≥0.39 mg/kg)

IMGN779 Phase 1 Study Conclusions

- IMGN779 displays tolerability with repeat dosing across a wide range of doses in patients with relapsed AML
 - Limited cytopenias, one DLT reported
 - AEs consistent with underlying disease
 - No cumulative toxicity following multiple doses (up to 40 doses)
- IMGN779 demonstrates anti-leukemia activity in 41% (12 of 29) patients with evaluable bone marrows (≥0.39 mg/kg), although with limited CR/CRis at doses examined to date
- Enrollment continues to identify the RP2D and schedule, which may warrant further development as combination therapy in AML

Thank you to the patients and families

MDAnderson Cancer Center

Making Cancer History®

